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The problem of radial oscillations of a spherical gas bubble in an unbounded volume of an i n c o m p ~  liquid under homobaric 
conditions in the gas [1, 2] is considered. The heat flux at the interface is investigated in the form of a Duham¢l integral. The 
kernel of the integral is represented by a series of exponential functions, and a simple analytic apprmimation is obtained for it 
with high accuracy. The principal asymptotic expansions for the heat flux are ~ for hi eh and low Pedet numbers. Expressions 
are derived for the remainder terms of the expansion. 

There are a considerable number of theoretical and experimental publications devoted to an investigation of  the 
effect of  interphase heat exchange on the oscillations of gas bubbles in a liquid. A detailed discussion of these can 
be found in [1-3]. 

1. T H E  F U N D A M E N T A L  E X P R E S S I O N  F O R  
T H E  I N T E R F A C E  H E A T  F L U X  

When there are rto phase transitions, the temperature of  the liquid remains practically unchanged and the heat 
flux q at the interface is produced exclusively by the thermal resistance of the gas [4]. Because there are no phase 
transitions, the healt flux, naturally, is continuous. Hence, q is determined by solving the internal problem of heat 
exchange for a bubble. The following expression is obtained from the solution of the linearized heat-conduction 
equation in a gas by Fourier's method [3] 

q ( t ) = -  RO [ d P G ( t - t l ~ d t  I (1.1) 
X2t* 0 dtl t, t, J 

Here R 0 is the equilibrium radius of the bubble, t is the time, p is the pressure in the gas, q = X OT/'dr is the 
interface heat flux, ris the Euler coordinate--the distan~ from the centre of the bubble, Tand 7, are the temperature 
and thermal conductivity of the gas, t. -- R20/(~2a) is the characteristic thermal time of  the problem, and a is the 
thermal diffusivity of the gas. 

The kernel of  integral (1.1) can be written as follows: 

G(x)= 2 ~, exp ( -n2x)=V(x) - l ,  ~F(x) = ~. exp(-n2x) (1.2) 
n = l  /1=--oo 

2. A N A L Y T I C  A P P R O X I M A T I O N  O F  T H E  I N T E G R A N D  

The function ¥(X) can be expressed in terms of the them-function, and the following identity holds for it [5] 

q/(X) = 3]-~'~ ~(lt 2 / X) (2.1) 

From (2.1) we e,~a obtain an expansion that is convenient for calculating ¥(x) whenx < xl 

V(x) = ~ 7 - ~ +  ri (x) 

r 1 (x)= 2 ~ ' - x  (exp(-n 2 / x)+ exp(-47t 2 / x)+...) (2.2) 
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From (1.2) we can obtain an expansion which is convenient for calculating q(x) when x > xl 

~/(x) = 1 + 2exp(-x)+ r2(x) 

(x) = 2(exp(-4x) + exp(-9x)+...) 
(2.3) 

The p o r t  xl can be chosen so that the remainder terms of rl and r2 are simultaneously the least. R is obvious 
that the point xl will satisfy the equation rl(x) = r2(x), whence we obtain Xl = 1.526. As a result we obtain the 
following analytic approximation for the function G(x) 

--X - l, 0<X~<Xl (2.4) 
G(x) =L2exp ( ' x ) '  Xl <~ x 

The highest error of  approximation (2.4) occurs at the point Xl: rl(Xl) -- r2(x0 -- 0.0045 (G(xl) -- 0.44), i.e. the 
relative error of  appro~dmation (2.4) amounts to 1%. 

The second approximation for G(x), which follows from expansions (2.2) and (2.3), has the form 

G ( x ) _ ( ~ / - n - ~ ( l * 2 e x p ( - I t 2 / x ) ) - l ,  O<x~<x2 (2.5) 
- L  2exp(-x)+2exp(-4x) ,  x 2 ~< x 

The boundary  point  x 2 is found in the same way from the condition for the error to be a minimum: x 2 = 2.083, 
where the greatest relative error amounts to 5.6 x 1 0 - ° % .  

The process of obtaining more accurate approximations can be continued similarly. The maximum error of the 
kth approximation decreases as exp (-(k + 1) 2 Xk). It can be shown that the quantity xk increases monotonically 
and, in the limit as k --¢ e% approaches 7t. 

Approximation (2.4) was proposed previously in [6], in which g/2 was taken instead of the point xl. 

3. A S Y M P T O T I C  F O R M S  F O R  H I G H  A N D  L O W  P E C L E T  N U M B E R S  

Expression (1.1), taking (2.4) into account, can be written in the form 

I--XlI* -- I _ R0 / 2  [ dPexJ_t-t .~t,+3[-~, i dp dt, i dPdt, t>Xlt. (3.1) 
q( ' )=  /t2t* ~ 0 dtl ~ t. ) t-xlt, dtl ~ t-xtt* dtl ' 

Herep0 is the equilibrium pressure in the gas and in the liquid, 01 is the density of the liquid (Pl = const), ~ ~ (3q~0/ 
pl)~/R0 is the Minnaert frequency of free adiabatic oscillations of the gas bubble [2], and PC = 2~"to, t, = 
(2R0/a)(3~p0/Pl) ~ is the thermal Pcelet number in the gas, which represents the square of the ratio of  the character- 
istic dimensions of  the problem to the thickness of the temperature boundary layer in the gas. If  the oscillations 
of the bubble are close to isothermal, the Pcelet number approaches zero and, eonversely, for oscillations dose to 
adiabatic we have PC >~ 1. 

We will consider small sinusoidal oscillations of the bubbles. The pressure of the gas varies periodically in the 
form of the real part of the expression 

p(t) = P0(1 +oexp(iO3rt)), Ioi ~ 1 (O = Ap / P0) 

Here 6p is the amplitude of the oscillations (for simplicity we will assume/~p = const). 
After replacing the variables of integration y = ¢t~(t - tl), expression (3.1) takes the form (~ = t ~  is dimensionless 

time) 

Pc q(t)=-io exp(i'Q(ll+12+13), X>~. ,  %=x I 
t ,  " 2/t 2 

!,(~e) r 0 "~ 0 ox. _ . . +  , . ,  

Here/1,12 and 13 correspond to the three terms in the expression for the heat flux (3.1). 
The asymptotic form for PC ~, 1, x ~, Pe/~ 2 is 

/!  Pe  . Pe 
= exp(-xl ) 7t--- T -  t exp(-x z )(I + x I ) 21t-------~- +... 

I 3 

n k n J  3 k . n ]  k 2 n J  

13 = - x ,  +ix, 2 / 2+... 

(3.2) 
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This asymptotic form above shows that, in the case of the oscillations of a bubble, close to isothermal (Pe ,~ 1), 
it is necessary to take into account in (3.1) all three terms in the braces. 

The asymptotic form for Pe ~ 1, x ~> Pe/n 2 is 

I! = -2 exp(-x! )(sin ~. +/cos ~. )+,.. 

~,x! ) - -~l 
cos ~,/+. . .  (3.3) 

13 = -s in x. +i(I - cos'~, ) 

It follows from (3.3) that the sum of the integrals I = 11 + 12 + 13 has the following principal asymptotic form: 
I = ~/(Ve)/2 + O(1). 

Hence, for the oscillatious of a bubble close to adiabatic with Minnaert frequency, we obtain from (3.1), using 
(3.3), the following expression for the interface heat flux (1.1) 

q( t )= -x / '~  n i dp dt I (1+O Ipe  - ½ / /  (3.4) 
t-xlt* dr! ~ ~. " 

Expression (3.4), :is can be seen from (3.3), has an error of the order of Pe -It2. Hence, it holds when ~/(Pe) ~, I. 
The asymptotic expressions (3.2) and (3.3) hold when • ~, Pe/n2. If x is taken into account, terms containing the 

exponentially small factor exp (-2g'x/Pe) are added to the expansion for 11. 
It has been shown in [6] how, using the asymptotic form (3.4), one can obtain the well-known Chapman-Plea,set 

solution (the expresMon for the log decrement of the damping radial oscillations of a gas bubble) [7], constructed 
earlier by a more complex method, without using expression (3.4). 
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